metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Roxan U. Richards-Johnson,^a Ishenkumba A. Kahwa^a* and Alan J. Lough^b

^aChemistry Department, University of the West Indies, Mona Campus, Kingston 7, Jamaica, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: ikahwa@uwimona.edu.jm

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.004 Å R factor = 0.023 wR factor = 0.055 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua(*N*,*N'*,*N''*,*N'''*-tetrakis(2-hydroxyethyl)-1,4,7,10-tetrazacyclododecane)praseodymium(III) hexanitratopraseodymate(III) dihydrate

The title compound, $[\Pr(C_{16}H_{36}N_4O_4)(H_2O)][\Pr(NO_3)_6]$ -2H₂O, was prepared as part of our search for polynuclear lanthanide(III) nanoclusters. The asymmetric unit contains two distinct metal sites, one in which the \Pr^{3+} ion is in coordination number 12 and the other in coordination number 9. The cations, anions and water molecules are linked in the crystal structure by $O-H\cdots O$ hydrogen bonds

Received 14 July 2003 Accepted 6 August 2003 Online 15 August 2003

Comment

The title compound, (I), was obtained from the templated oligomerization of 1-aziridineethanol. The reaction was carried out under basic conditions, yielding also insoluble hydroxides. Slow evaporation of the filtrate gave needle-like crystals.

The Pr^{3+} ions are in two distinct environments (see Fig. 1). In the first case, Pr1 is coordinated by six bidentate nitrate ions, resulting in an icosahedral polyhedron with Pr^{3+} ions having a coordination number (CN) of 12. In the second case, Pr2 is encapsulated in the macrocycle N, N', N'', N'''-tetrakis(2-hydroxyethyl)-1,4,7,10-tetrazacyclododecane (H₄L), bonding to four tertiary amines and four alkoxides. The stereo-

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

 $D_{\rm r} = 2.028 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 7809

Mo $K\alpha$ radiation

reflections

 $\theta = 2.6-27.5^{\circ}$ $\mu = 2.89 \text{ mm}^{-1}$

T = 150 (1) K

Needle, green

 $R_{\rm int}=0.027$

 $\theta_{\rm max} = 27.7^{\circ}$

 $\begin{array}{l} h = -20 \rightarrow 20 \\ k = -18 \rightarrow 18 \end{array}$

 $l = -20 \rightarrow 19$

 $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta\rho_{\rm max} = 1.29 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.25 \times 0.25 \times 0.15 \ \mathrm{mm}$

7950 independent reflections

 $w = 1/[\sigma^2(F_o^2) + 2.2848P]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.00094 (8)

7143 reflections with $I > 2\sigma(I)$

View of the hydrogen bonding in (I) corresponding to Table 2. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (ii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.]

chemistry of the chelate H_4L is $\Delta(\delta\delta\delta\delta)$. Atom Pr2 achieves a CN of 9 by bonding to a water molecule. The components in the crystal structure are linked by $O-H\cdots O$ hydrogen bonds involving water molecules, nitrate ligands and the alkoxide groups (see Table 2 and Fig. 2). The crystal structure of (I) is the same as that found previously for the La analog (Thompson, 2001).

Experimental

 $Pr(NO_3) \cdot 3H_2O$ (5.03 mmol) was dissolved in 100 ml of anhydrous ethanol and added dropwise to 2 mmol of 1-aziridineethanol in refluxing 50 ml of a 0.02 *M* solution of NaOH under reflux . Reflux

was continued for about one week, after which the reaction was filtered and slow evaporation of the filtrate yielded green needle-like crystals of (I) in *ca* 10% yield. Analysis calculated for $C_{16}H_{42}N_{10}O_{25}Pr_2$: C 18.19, H 4.14, N 13.10%; found: C 17.71, H 4.03, N 12.76%.

Crystal data

 $[\Pr(C_{16}H_{36}N_4O_4)(H_2O)] [\Pr(NO_3)_6]\cdot2H_2O$ $M_r = 1056.42$ $Monoclinic, P2_1/n$ a = 15.5786 (3) Åb = 14.4453 (3) Åc = 15.5995 (3) Å $\beta = 99.7490 (10)°$ V = 3459.78 (12) Å³Z = 4

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (*DENZO-SMN*; Otwinowski & Minor, 1997) $T_{\min} = 0.516, T_{\max} = 0.651$ 27454 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.055$ S = 1.097950 reflections 519 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å).

Pr1-O2	2.5568 (18)	Pr1-O13	2.7478 (17)
Pr1-O8	2.5628 (18)	Pr2-O20	2.4548 (18)
Pr1-O4	2.5687 (18)	Pr2-O22	2.4573 (18)
Pr1-07	2.5751 (17)	Pr2-O19	2.4698 (17)
Pr1-O5	2.5910 (17)	Pr2-O21	2.4853 (17)
Pr1-O11	2.6093 (18)	Pr2-O23	2.5596 (18)
Pr1-O17	2.6287 (17)	Pr2-N7	2.677 (2)
Pr1-O1	2.6354 (18)	Pr2-N9	2.682 (2)
Pr1-O14	2.6445 (18)	Pr2-N10	2.7224 (19)
Pr1-O10	2.6620 (18)	Pr2-N8	2.745 (2)
Pr1-O16	2.6730 (18)		

Table 2	2
---------	---

Hydrogen-bonding	geometry (A	A, °).
------------------	-------------	--------

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O23−H23A····O13 ⁱ	0.84 (2)	2.24 (2)	2.979 (3)	146 (2)
$O20-H20\cdots O1W$	0.84(2)	1.79 (2)	2.622 (3)	174 (2)
O23−H23 <i>B</i> ···O17	0.84 (2)	2.02 (2)	2.835 (3)	164 (2)
$O1W-H1WA\cdots O15^{i}$	0.84 (2)	2.05 (2)	2.873 (3)	165 (2)
O1W−H1WB···O11 ⁱⁱ	0.84(2)	2.02(2)	2.849 (3)	171 (2)
$O22-H22\cdots O2W$	0.84 (2)	1.78 (3)	2.599 (3)	166 (2)
$O21 - H21 \cdots O13^{i}$	0.84(2)	1.93 (2)	2.768 (2)	174 (2)
O19-H19···O5	0.84 (2)	1.87 (2)	2.702 (2)	169 (2)
O2W−H2WA···O3 ⁱⁱⁱ	0.84(2)	2.24 (2)	3.079 (4)	175 (2)
$O2W - H2WB \cdots O9$	0.84(2)	2.43 (2)	3.032 (3)	130 (2)
$O2W - H2WB \cdots O7$	0.84 (2)	2.46 (2)	3.078 (3)	131 (2)
$O2W - H2WB \cdots O6^{i}$	0.84 (2)	2.50 (2)	3.191 (3)	141 (2)

Symmetry codes: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (ii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.

All H atoms bonded to C atoms were placed in calculated positions, with C–H distances of 0.99 Å and were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. H atoms bonded to O atoms were refined independently with isotropic displacement parameters, but the O–H distances were restrained to be 0.840 (1) Å. The maximum residual electron density peak was located 1.56 Å from atom Pr2.

Data collection: *COLLECT* (Nonius, 1997–2002); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the Board for Graduate Studies and Research, University of the West Indies for supporting the work. The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2001). *SHELXTL/PC*. Version 6.12 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thompson, M. K. (2001). PhD Thesis, University of the West Indies.