Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Roxan U. Richards-Johnson, ${ }^{\text {a }}$ Ishenkumba A. Kahwa ${ }^{\mathrm{a} *}$ and Alan J. Lough ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry Department, University of the West Indies, Mona Campus, Kingston 7, Jamaica, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:

ikahwa@uwimona.edu.jm

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.055$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua($N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tetrakis(2-hydroxyethyl)-1,4,7,10-tetrazacyclododecane)praseodymium(III) hexanitratopraseodymate(III) dihydrate

The title compound, $\left[\operatorname{Pr}\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{6}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, was prepared as part of our search for polynuclear lanthanide(III) nanoclusters. The asymmetric unit contains two distinct metal sites, one in which the Pr^{3+} ion is in coordination number 12 and the other in coordination number 9. The cations, anions and water molecules are linked in the crystal structure by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Comment

The title compound, (I), was obtained from the templated oligomerization of 1 -aziridineethanol. The reaction was carried out under basic conditions, yielding also insoluble hydroxides. Slow evaporation of the filtrate gave needle-like crystals.

(I)

The Pr^{3+} ions are in two distinct environments (see Fig. 1). In the first case, $\operatorname{Pr} 1$ is coordinated by six bidentate nitrate ions, resulting in an icosahedral polyhedron with Pr^{3+} ions having a coordination number (CN) of 12 . In the second case, $\operatorname{Pr} 2$ is encapsulated in the macrocycle $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tetrakis(2-hydroxyethyl)-1,4,7,10-tetrazacyclododecane $\left(\mathrm{H}_{4} L\right)$, bonding to four tertiary amines and four alkoxides. The stereo-

View of (I), showing the atom-labeling scheme, with ellipsoids drawn at the 30% probability level. H atoms and water molecules have been omitted.

Received 14 July 2003

Accepted 6 August 2003
Online 15 August 2003

Figure 2
View of the hydrogen bonding in (I) corresponding to Table 2. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}$, $\frac{1}{2}-z ;$ (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.]

Figure 3
Packing diagram (Spek, 2003), viewed approximately along the b axis. Atom colours are as labeled in Fig. 1.
chemistry of the chelate $\mathrm{H}_{4} L$ is $\Delta(\delta \delta \delta \delta)$. Atom $\operatorname{Pr} 2$ achieves a CN of 9 by bonding to a water molecule. The components in the crystal structure are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving water molecules, nitrate ligands and the alkoxide groups (see Table 2 and Fig. 2). The crystal structure of (I) is the same as that found previously for the La analog (Thompson, 2001).

Experimental

$\operatorname{Pr}\left(\mathrm{NO}_{3}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}(5.03 \mathrm{mmol})$ was dissolved in 100 ml of anhydrous ethanol and added dropwise to 2 mmol of 1 -aziridineethanol in refluxing 50 ml of a 0.02 M solution of NaOH under reflux . Reflux
was continued for about one week, after which the reaction was filtered and slow evaporation of the filtrate yielded green needle-like crystals of (I) in ca 10% yield. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{42} \mathrm{~N}_{10} \mathrm{O}_{25} \mathrm{Pr}_{2}$: C 18.19, H 4.14, N 13.10\%; found: C 17.71, H 4.03, N 12.76%.

Crystal data

$\left[\operatorname{Pr}\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-$
$\left[\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1056.42$
Monoclinic, $P 2_{1} / n$
$a=15.5786$ (3) \AA
$b=14.4453$ (3) \AA
$c=15.5995$ (3) \AA
$\beta=99.7490$ (10) ${ }^{\circ}$
$V=3459.78(12) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.516, T_{\text {max }}=0.651$
27454 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.055$
$S=1.09$
7950 reflections
519 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=2.028 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7809 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=2.89 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Needle, green
$0.25 \times 0.25 \times 0.15 \mathrm{~mm}$

7950 independent reflections
7143 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.7^{\circ}$
$h=-20 \rightarrow 20$
$k=-18 \rightarrow 18$
$l=-20 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+2.2848 P\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=1.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.73 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.00094 (8)

Table 1

Selected geometric parameters (A).

Pr1-O2	$2.5568(18)$	Pr1-O13	$2.7478(17)$
Pr1-O8	$2.5628(18)$	Pr2-O20	$2.4548(18)$
Pr1-O4	$2.5687(18)$	Pr2-O22	$2.4573(18)$
Pr1-O7	$2.5751(17)$	Pr2-O19	$2.4698(17)$
Pr1-O5	$2.5910(17)$	Pr2-O21	$2.4853(17)$
Pr1-O11	$2.6093(18)$	Pr2-O23	$2.5596(18)$
Pr1-O17	$2.6287(17)$	Pr2-N7	$2.677(2)$
Pr1-O1	$2.6354(18)$	Pr2-N9	$2.682(2)$
Pr1-O14	$2.6445(18)$	Pr2-N10	$2.7224(19)$
Pr1-O10	$2.6620(18)$	Pr2-N8	$2.745(2)$
Pr1-O16	$2.6730(18)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 23-\mathrm{H} 23 A \cdots \mathrm{O} 13^{\text {i }}$	0.84 (2)	2.24 (2)	2.979 (3)	146 (2)
$\mathrm{O} 20-\mathrm{H} 20 \cdots \mathrm{O} 1 W$	0.84 (2)	1.79 (2)	2.622 (3)	174 (2)
$\mathrm{O} 23-\mathrm{H} 23 B \cdots \mathrm{O} 17$	0.84 (2)	2.02 (2)	2.835 (3)	164 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 15^{\mathrm{i}}$	0.84 (2)	2.05 (2)	2.873 (3)	165 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 11^{\text {ii }}$	0.84 (2)	2.02 (2)	2.849 (3)	171 (2)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 2 \mathrm{~W}$	0.84 (2)	1.78 (3)	2.599 (3)	166 (2)
$\mathrm{O} 21-\mathrm{H} 21 \cdots \mathrm{O} 13^{\text {i }}$	0.84 (2)	1.93 (2)	2.768 (2)	174 (2)
O19-H19 . . O5	0.84 (2)	1.87 (2)	2.702 (2)	169 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 3^{\text {iii }}$	0.84 (2)	2.24 (2)	3.079 (4)	175 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 9$	0.84 (2)	2.43 (2)	3.032 (3)	130 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 7$	0.84 (2)	2.46 (2)	3.078 (3)	131 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O}^{\text {i }}$	0.84 (2)	2.50 (2)	3.191 (3)	141 (2)

[^0]
metal-organic papers

All H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bonded to O atoms were refined independently with isotropic displacement parameters, but the $\mathrm{O}-\mathrm{H}$ distances were restrained to be 0.840 (1) Å. The maximum residual electron density peak was located $1.56 \AA$ from atom $\operatorname{Pr} 2$.

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Board for Graduate Studies and Research, University of the West Indies for supporting the work. The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thompson, M. K. (2001). PhD Thesis, University of the West Indies.

[^0]: Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

